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Abstract 

A nonlinear integro-differential equation is used to investigate the effects of 
ocean iron fertilization on the evolution of the phytoplankton biomass. This 
equation contains terms responsible for fragmentation, coalescence, growth-
decay, grazing, and sinking of the phytoplankton aggregates. The evolution 
equation is analyzed by using the theory of semilinear dynamical systems and 
numerical simulations are performed. Our results demonstrate the validity of 
the iron hypothesis in fighting climate change. 

1. Introduction 

Phytoplankton are microscopic plant-like marine organisms that sit 
at the bottom of the food chain. They are food for other plankton and 
small fish, as well as larger animals such as whales. Phytoplankton get 
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their energy from carbon dioxide through photosynthesis and so are very 
important in carbon cycling. As each year, they transfer billion tonnes of 
carbon from the atmosphere to the ocean reducing global warming in the 
process, they are of primary interest to oceanographers and earth 
scientists around the world. These tiny marine organisms, which are 
crucial components of marine ecosystems, have been slowly disappearing 
over the last century, according to researchers [10, 12]. The decline is 
worrying because it may have profound effects on marine life and climate 
change. The major decrease has been recorded in the High Nitrate Low 
Chlorophyll (HNLC) regions that are thought to represent about 20 
percent of the areal extent of the world’s oceans ([10] and references 
therein). These are generally regions characterized by more than 2 
micromolar nitrate and less than 0.5 micrograms chlorophyll per liter. 
The major HNLC regions include the Subarctic Pacific, large regions of 
the Eastern Equatorial Pacific and the Southern ocean. These HNLC 
regions persist in areas which have high macro-nutrient concentrations, 
adequate light, and physical characteristics required for phytoplankton 
growth, but have very low plant biomass. It is believed that 
phytoplankton growth in major nutrient-rich HNLC regions is limited by 
iron deficiency [10, 12]. The main purpose of this paper is to show that 
global warming can be substantially reduced and to some extent 
annihilated by fertilizing the HNLC areas of the oceans by a very modest 
amount of iron. The formation of large particles (aggregates) through 
multiple collision of smaller ones is a highly visible phenomenon in 
oceanic waters. Several authors have attempted to model the dynamics of 
phytoplankton in such a way as to exhibit this structure [1, 2, 4, 5, 7, 8, 9, 
11, 13, 15, 17]. In this setting, the individual unit is an aggregate and 
aggregates are structured by their mass. One of the most efficient 
approaches to modelling the dynamics of phytoplankton aggregates is 
through a rate equation, which describes the evolution of the distribution 
of interacting aggregates with respect to their mass. The evolution 
equation contains terms responsible for the coalescence, disaggregation, 
growth-decay, sinking to the seabed of the aggregates and their grazing 
by the zooplankton. The novelty in our model from a mathematical point 
of view is that, we allow the kernels to vary according to the level of 
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marine iron concentration. Next, we present a full description of the 
phytoplankton aggregates model used in this article and provide the 
assumptions. Then, we make use of the theory of semilinear abstract 
Cauchy problem used to analyze coagulation fragmentation processes 
with growth [2, 3, 4, 5, 9, 13, 14, 15, 17] or decay [3, 15] in order to show 
the well-posedness of the adopted model. In the last part of the article, 
numerical simulations are performed and the results are discussed. 

2. Description of the Model and Assumptions 

Following [4], we consider the following nonlinear transport equation 
that contains terms responsible for the growth/decay of phytoplankton 
aggregates, their fragmentation, coagulation, grazing, and sinking of 
aggregates into the seabed: 

( ) [ ( ) ( )] ( ) ( ) ( ) ( )xtuxdxtuxsxtuxrxxtut ,,,, ζζζζζζ −−
∂
∂−=

∂
∂  

 ( ) ( ) ( ) ( ) ( )dyytuyxbyaxtuxa
x

,, ζ
∞

ζ ∫+−  

 ( ) ( ) ( )dyytuyxkxtu ,,,
0

ζ
∞

ζ ∫−  

 ( ) ( ) ( ) ,,,,2
1

0
dyytuyxtuyyxk

x
ζζ −−+ ∫   (2.1) 

where ζ  represents the iron concentration in the sea. The sinking rate 

and the growth-decay rate of the clusters are denoted by ζs  and ,ζr  

respectively, they are ζ -dependent. Here +∈ Rx  represents the size of 

particles, t is the time variable, and ζu  is the density of particles of mass 

x. The fragmentation rate is denoted by a and b describes the distribution 
of masses x of particles spawned by the fragmentation of a particle of 
mass y. The removal of phytoplankton aggregate is carried out by the 
grazing of the population by the zooplankton and the clusters sinking in 
to the seabed. The grazing rate is denoted by ( )xd  and it is assumed that 
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( ).+∞∈ RLd   (2.2) 

We introduce the following notation for formal expressions appearing 
in (2.1): 

 [ ] ( ) [ ( ) ( )] ( ) ( ),xuxqxuxrxxu ζζζζζζ −
∂
∂−=T  (2.3) 

 [ ] ( ) ( ) ( ) ( ) ,dyyuyxbyaxu
x

ζ
∞

ζ ∫=B  (2.4) 

 [ ] ( ) ( ) ( ) ( )dyyuyxkxuxu ζ
∞

ζζ ∫−= ,
0

K  

 ( ) ( ) ( ) ,,2
1

0
dyyuyxuyyxk

x
ζζ −−+ ∫  (2.5) 

where .ζζ ++= sdaq  

2.1. Assumptions on the coefficients 

The sinking function 0≥ζs  represents the removal rate of the 

aggregates of phytoplankton into the seabed; it is assumed that for any 
fixed ,+∈ζ R  

( ).+∞ζ ∈ RLs   (2.6) 

We assume that the fragmentation rate a is essentially bounded on 
compact subintervals of ;+R  i.e., 

( )., +∞∈ RlocLa   (2.7) 

Further, 0≥b  is assumed to be a measurable function of two variables, 
satisfying 

( ) .for;0 yxyxb >=   (2.8) 

The local law of mass conservation requires 

( ) .0eachfor,
0

>=∫ yydxyxxb
y

  (2.9) 
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The coagulation kernel ( )yxk ,  represents the likelihood of a particle of 
size x attaching itself to a particle of size y and we assume 

( ).0 2
+∞∈≤ RLk   (2.10) 

The transport part is more tortuous. Our principal assumption is that 
clusters of phytoplankton grow ( )0>ζr  when the iron concentration ζ  

in the sea is bigger than a critical value cζ  and they decay otherwise 
( ).0<ζr  In phytoplankton models typically, we have ( ) xxr ~ζ  as 

growth/decay is proportional to number of particles (cells) in the 
aggregate. Thus, we assume that 

( ) ,~xrxr ≤ζ   (2.11) 

for some constant 0~ >r  and 

( ),+ζ ∈ RACr   (2.12) 

where ( )+ζ ∈ RACr  means that ζr  is absolutely continuous on each 

compact subinterval of .+R  Further assumptions on ζr  depend on 

whether we deal with the decay or growth case. As we shall see, in the 
decay case, there is no need for boundary conditions. On the other hand, 
depending on the integrability of ζr  at ,0=x  the transport equation 

describing growth may require a boundary condition at .0=x  In this 
paper, we consider the general McKendrick-von Foerster renewal 
boundary condition 

( ) ( ) ( ) ( ) ,,,lim
00

dyytuyxtuxr
x

ζζ
∞

ζζ
→

β= ∫+
  (2.13) 

where ζβ  is a suitable positive measurable function for any .0≠ζ  If 

,0≡βζ  then we have standard no-influx condition. If, however, 

( ) ,0>βζ y  then it describes the rate at which an aggregate of size y sheds 

monomers of the smallest ‘zero’ size, which then re-enter the system as 
new aggregates and start to grow. The nonlinear integro-differential 
equation (2.1) will be supplemented with an initial condition. 
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3. Analysis of the Problem 

Our approach is to analyze the evolution equation in the Banach 
space 

( ) ( )( ) ( ) ( ) ,1;1,,0:
0

11,0








+∞<+φφ=+∞= ∫
∞

dxxxdxxLX   (3.1) 

in which both the total mass and the number of particles are controlled. 
In order to ensure the validity of the general McKendrick-von Foerster 
renewal boundary condition, we further assume that 

,0anyfor,and, 1,1, >ζ∈∈β ∞ζ∞ XrX   (3.2) 

where 1,∞X  is the dual space of .1,0X  It consists of measurable functions f 

for which 

( ) .1supess1, ∞<
+

=
+∈

∞ x
xff

x R
 

The duality pairing is given by the integral 

( ) ( ) .,
0

dxxgxfgf ∫
∞

=><  

In this section, we make use of the theory of semilinear abstract 
Cauchy problems. The idea is to show that the linear operator induced by 
fragmentation, growth, and sinking of the aggregates generates a 
strongly continuous semigroup. This linear operator is then perturbed by 
the nonlinear operator induced by coagulation of the aggregates and 
yields the existence and uniqueness of a local solution to the evolution 
equation. Global existence is thereafter obtained by showing that the 
local solution does not blow up infinite time. 

3.1. Analysis of the linear part 

Let us denote by ζT  the realization of ζT  (defined via (2.3)) on the 

domain 

{ ( )( ) ( ) },,,; 1,001,01,0 XvrxACvrXvqXvD x ∈/∞∈/∈/∈/= ζζζ   (3.3) 
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if 1−
ζr  non-integrable at 0, and on the domain 

( ) ( ) ( ) ( ) ,lim:
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,
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
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


/β=/∈/= ∫
∞

ζ
→

ζζβ +
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x
  (3.4) 

otherwise. In addition, let B be the realization of B  (defined via (2.4)) on 
the domain 

( ) ( ) { ( )( ) ( ) }.,0,; 1,01,01,0 XvrACvrXvqXvTDBD x ∈/∞∈/∈/∈/== ζ  

For further use, we define for any iron concentration 0>ζ  

( ) ( ) ( )
( )
( ) .:,1:
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ζ
ζ ∫∫ ==   (3.5) 

Theorem 3.1. The operator ( ( ))ζζ TDT ;  with the resolvent given by 

( ( ) ) ( )
( ) ( )

( )

( ) ( )

( ) ( ) ,dyyfyr
e

xr
exfsRe

yQyR

x

xQxR

ζ

+λ∞

ζ

+λ

ζ

ζζζζ

∫=λ   (3.6) 

for any 0>λ  and 1,0Xf ∈  is the generator of a strongly continuous 

positive semigroup of contractions, say { ( )} 0≥ζ tT tS  on .1,0X  

Proof. The case 0>ζr  representing fragmentation with growth is 

similar to [17] and the case 0<ζr  representing decay can be found in 

detail in [15]. In both cases, the expression of the resolvent is obtained 
and Hille-Yosida inequality is proven to be satisfied.   

Theorem 3.2. There exists an extension ( ( ))ζζ GDG ;  of the operator 

( ( )),; ζζ + TDBT  which generates a positive strongly continuous semigroup 

( ( )) 0≥ζ tG tS  in .1,0X  Moreover, the generator ζG  is characterized by 

( ) ( ) [ ( ) ] ,11

0

1 vTIBTIvGI n

n
/−λ−λ=/−λ −

ζ
−

ζ

∞

=

−
ζ ∑   (3.7) 

for 1,0Xv ∈/  and .0>λ  
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Proof. The proof is a generalization of a similar result for the space 
,1,0X  obtained in [4] by assuming that the fragmentation rate a is  

linearly bounded. The analysis in [4] can be easily extended to general 
fragmentation rates because the fragmentation equation behaves well in 

the bigger space ( )( ) { ( ) }.;,,0:
011 +∞<φφ=∞= ∫
∞

xdxxxdxLX  A complete 

proof of this theorem is available in [15].   

Theorem 3.3. Assume ( ) ( ) ( ) ( ) ,limlim
00

+∞<++= ζ→ζ→
xsxdxaxq

xxx
 

then the generator of the semigroup ( ( )) 0≥ζ tG tS  is given by 

.BTG += ζζ  

Proof. The theory of extension of operator is instrumental in the 

proof of this theorem. In the case 1−r  non-integrable at ,0x  the 

assumption made is not necessary. The semigroup ( ( )) 0≥ζ tG tS  is honest 

for arbitrary fragmentation rate ( )( )∞∈ ∞ ,0, locLa  and grazing rate 

( )( ).,0 ∞∈ ∞Ld  The proof is analogous to the analysis for honesty 

performed in [3]. For 1−r  integrable at 0, the proof is obtained in a 
similar way as in [4], where honesty was investigated in the space .1,0X    

 

3.2. Global solutions of the transport equation with fragmentation 
and coagulation 

In this section, we show the existence of a global solution to the full 
evolution problem (2.1) endowed with its initial and boundary conditions. 
This evolution equation is represented by the following semilinear 
abstract Cauchy problem: 

( ) [ ] ( ),tuKGtdt
du

ζζ
ζ +=  

 ( ) ,0 0uu =ζ  (3.8) 
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where K is the realization of the expression 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,,,2
1

00
dyyvyxkxvdyyvyxvyyxkxv

x
//−/−/−=/ ∫∫

∞
K   (3.9) 

for nonzero v/  on the space 1,0X  and ( ) .00 =K  Since the linear 

semigroups ( ( )) 0≥ζ tG tS  is positive, we shall work in the positive cone of 

,1,0X  denoted by .1,0
+X  

Theorem 3.4. Let ,1,00
+∈ Xu  then the Cauchy problem 

( ) ( )[ ] ( )[ ] ( ) ,0, 0uutuKtuGtdt
du

=+= ζζ
ζ   (3.10) 

has a unique global solution. 

Proof. In order to prove that (3.8) has a solution, which is global in 
time, we shall proceed in a usual way [4] by converting it to the integral 
equation 

( ) ( ) ( ) [ ( )] ,0,
0

0 ≥−+= ζζ ∫ tdssuKstSutStu G
t

G   (3.11) 

where ( ( )) 0≥tG tS  is the semigroup generated by G. We use the fact that 

+1,0X  is a complete metric space as a closed subspace of a Banach space, 

see [18, Theorem 6.1.2]. The method is analogous to the proof of global 
existence in [4] with the space .1,0X    

4. Numerical Simulations 

This section provides a prediction of the phytoplankton biomass 

( ) ( ) ,,
0

dxxtxutN ζ
∞

ζ ∫=  

from the year 2010 to 2030. A numerical method shall be used and 
numerical simulations performed over the evolution equation 
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( ) [ ( ) ( )] ( ) ( ) ( ) ( )xtuxdxtuxsxtuxrxxtut ,,,, −−
∂
∂−=

∂
∂

ζζζ  

 ( ) ( ) ( ) ( ) ( )dyytuyxbyaxtuxa
x

,, ∫
∞

+−  

( ) ( ) ( )dyytuyxkxtu ,,,
0∫
∞

−  

( ) ( ) ( ) ,,,,2
1

0
dyytuyxtuyyxk

x
−−+ ∫  

describing the dynamics of the phytoplankton population. 

4.1. Empirical data and estimation of kernels 

We shall set the initial conditions to be ( ) ,100, 8 xexu −χ=  where χ  is 

a positive real number. To determine the effects of ocean iron concentration 
ζ  on the dynamics of the population, we follow [20] and make use of 

Runge-Kutta methods extended with a quadrature technique (Pouzet 
type) in order to simulate the corresponding non-dimensionalized 
evolution equation. We investigate the dynamics of the plankton 
population in the HNLC regions and predict the evolution corresponding 
to some specified values of iron concentration. The kernels used in the 
simulations are summarized in the following table: 
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Table 1. Kernels used in the simulations 

Description Kernels 

Fragmentation rate ( ) α= xxa  

Daughter particles distribution rate ( ) ( )
1

2,
+

+= ν

νν
y

xyxb  

Grazing rate ( ) dxd =  

Aggregation rate ( ) kyxk =,  

Growth rate ( ) ( )xxr cζ−ζ=ζ  

Sinking rate ( ) xxs ζ=ζ  

Renewal rate ( ) xx ζ=βζ  

Parameter values were estimated from available experimental 
information. In the events where no observational data could be obtained, 
parameter values were picked out to provide the best qualitative 
numerical simulation results. This is in line with previous articles 
successfully simulating the dynamics of phytoplankton [1, 12]. 

Table 2. Parameter values used in the simulations 

Parameter Value Source 

cζ  2 [1, 12] 

ζ  (0.02,10) fitted 

d  20 fitted 

k  500 fitted 

ν  0 [12, 15] 

χ  (1.8, 2.2) fitted 

α  0.75 [1, 12, 15] 
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4.2. Computational simulations 

The critical iron concentration value that determines the growth or 
decay of phytoplankton aggregates is approximately 2 nanomole (nM) per 
litre in the high nitrate low chlorophyll (HNLC) regions of the oceans 
[15]. Simulations are performed for iron concentration values around this 
critical value 

{ },10,5,3,5.2,4.2,1.2,6.1,4.1,1,5.0,1.0,02.0∈ζ  

and arbitrary χ  values in the range (1.8, 2.2). The fragmentation 

daughter particle distribution kernel is chosen to be binary 0=ν  and 

the fragmentation rate ( ) 75.0xxa =  is chosen to be linearly bounded. The 

coalescence rate k and the grazing rate d are taken to be 500 and 20, 
respectively. The simulation results are summarized in Figures 1, 2, and 
3, respectively.  

4.3. Interpretation of the results and discussions 

The simulations results suggest that iron (Fe) availability is the 
primary factor controlling phytoplankton production in HNLC regions of 
the oceans. The population biomass is seen to increase with cζ>ζ  and 

decrease otherwise over a long period of time. The increment in the 
biomass observed for cζ<=ζ 6.1,4.1  in the first 10 year interval can be 

explained by the fact that HNLC regions are in general nutrient-rich 
areas and plankton population may grow with a very little amount of iron 
available ( ).nM03.0<ζ  However, the population reduces substantially 

in the long run because the acquisition of sufficient iron (Fe) for 
phytoplankton syntheses of Chl and nitrate reductase needed by them to 
use the abundant major nutrients becomes a serious problem [10, 12]. 
Another important feature in Figure 2 is the suggestion that maintaining 
the level of iron concentration just a little bit above the critical value cζ  

has the potential to ensure a long term satisfactory level of phytoplankton 
biomass. It also clearly shows that raising the level of marine iron too 
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much above cζ  does not present any technical advantage in the long run. 

The results of this study indicate that iron hypothesis can be 
implemented in a very cost-effective way and produce impressive results. 
In summary, we have made used of mathematical and computational 
techniques in order to present a very efficient method to increase the 
world phytoplankton biomass. We recommend this method to be used in 
future in order to systematically reduce the effects of global warming. 

 

Figure 1. Comprehensive prediction of the phytoplankton biomass. 
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Figure 2. Prediction of the phytoplankton biomass with .cζ<ζ  

 

Figure 3. Prediction of the phytoplankton biomass with .cζ>ζ  
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